6. Influence of Lithium Chloride on the Morphology of Flexible Slabstock Polyurethane Foams and Their Plaque Counterparts

ثبت نشده
چکیده

6.1 Chapter Summary In continuing efforts to understand urea phase connectivity in flexible polyurethane foams and its implications on physical properties, LiCl is used to alter the phase-separation behavior of slabstock foams. Comparisons are also drawn with plaque counterparts, which are prepared using the same polyol, isocyanate, and chain extender (water). LiCl is shown to alter the solid-state phase separation behavior of the foams and the plaques in a similar manner. This is confirmed using multiple characterization techniques, which provide information at different scale lengths. The foams and plaques with and without LiCl are shown to possess a microphase separated morphology with interdomain spacings of ca. 100 Å. SAXS and TEM reveal that addition of LiCl reduces the urea aggregation behavior, typical in slabstock polyurethane foams, leading to a loss in the urea phase macro connectivity. Hard segment ordering, as studied by WAXS and FTIR, is shown to be of a similar nature in the plaque and foam, which do not incorporate LiCl. Addition of LiCl leads to a loss in the segmental packing behavior, or micro level connectivity of the urea phase, in both the plaques and corresponding foams, as inferred from WAXS and FTIR. The LiCl additive interacts with the polyol soft segments in an insignificant manner as shown from FTIR and DMA. In addition, foams containing LiCl are found to possess more intact cell windows due to the influence of LiCl on reaction kinetics as well as its effect on the precipitation of the urea phase. The experimental observations are supported by quantum mechanical calculations using a Density-Functional-Theory (DFT) approach, where molecular interactions between LiCl and model ether, urethane, and urea compounds are investigated. Interaction geometries of most stable complexes and their stability energies are calculated. Stability energies of ether/LiCl, urethane/LiCl, and urea/LiCl were determined to be –189, –617, and –687 kJ/mole respectively, reinforcing that LiCl interacts predominantly with urea hard segments and in a minimal manner with the polyol soft segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3. Exploring Macro and Micro Level Connectivity of the Urea Phase in Slabstock Flexible Polyurethane Foam Formulations Using Lithium Chloride as a Probe

3.1 Chapter Summary Urea phase connectivity has been probed by systematically varying the hard segment content, and lithium chloride content, in a series of plaques based on slabstock flexible polyurethane foams. The plaque formulations are identical to those of slabstock polyurethane foams with the exception that a surfactant is not utilized. SAXS is used to demonstrate that all materials inve...

متن کامل

Effect of non-acoustic properties on the sound absorption of polyurethane foams

In this paper the influence of non-acoustic properties on the sound absorption coefficient of polyurethane foams as a porous medium is investigated. Biot’s equations with transfer matrix method, as the solution approach are employed to evaluate the sound absorption coefficient of selected polyurethane foams. The major issue is the dependency of non-acoustic properties on each other which makes ...

متن کامل

Correlation Between the Acoustic and Cell Morphology of Polyurethane/Silica Nanocomposite Foams: Effect of Various Proportions of Silica at Low Frequency Region

Introduction: Reducing noise pollution has become an essential issue due to the increase in public concern and also social demands for a better lifestyle. Using sound absorption materials is a preferred method to reduce the noise pollution. Undesirable properties of pure polyurethane such as poor absorption of mechanical energy in narrow frequency ranges can be improved by providing polymeric n...

متن کامل

Characterization of Polymer Morphology in Polyurethane Foams Using Atomic Force Microscopy

One of the most important challenges in polyurethane (PU) science is characterization of foam morphologies, which provides information to help understand material properties and improve synthesis conditions. Atomic force microscopy (AFM) is a very useful technique to obtain such information. A key challenge is to apply this technique to PU foams without destroying their cell structure. In this ...

متن کامل

Investigation in to Properties of Polyurethane Closed Cell by High Loading of SiO2 Nanoparticles

In this research the composition of polyurethane closed cell (PUCC) with two different concentrations of SiO2 nanoparticles (1.0 and 2.0 wt%) have been prepared. Optical microscopy and SEM imaging, watering uptake, FTIR and Raman spectroscopy of the synthesized samples were carried out. The optical microscopy imaging of samples showed differences in the appearance of matrix produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002